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Introduction

@ Introduce Quadrature Rules.

® Generalize this to Gaussian Quadrature rules.

© lllustrate some examples.

@ Introduce the tridiagonal matrix eigenvalue problem.

Next time:

@ How can the weights from Gaussian Quadrature be used for other
linear algebra algorithms?

® Lanczos algorithm, Ritz Values & Vectors, ...




Problem Statement

Goal: Given a function f € C|a, b), distinct {xp, x1,...,x,} C [a, b], and
{wo, w1, ..., w,} € R, we wish to write

b n
/f(x)dx ~ ijf(xj).

Motivation:

® Perhaps we only know f by its action on some points.
e There may not be an elementary antiderivative of f.
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Introduction

Our discussion will be based on interpolary quadrature methods.

Find the n'" degree polynomial interpolant p, to f at the nodes xq, . . . , Xp.

/a THo)dx ~ /  oa(00)

If f € C"1[a, b], the error is

] = / ) (E(x)) d
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Constructing p,(x)

Here and going forward, we let
P, = {polynomials of degree at most n}.

Given n + 1 distinct points {xo, ..., x,} C [a, b], the Lagrange basis for P, is

_ n X — Xk
{lo,01,...,0,}, where KJ(X)_kI:[oXJ*Xk.
k]

Then we have the unique degree n polynomial interpolant to f:
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Determining Weights

Now, notice that
b b
/ f(x)dx = / pn(x) dx
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Let w; = fab lj(x) dx forj=0,...,n Then

/ab f(x) dx

Q
R
=
X
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Quadrature Rule

b n b
[ s =~ Swite).  w=[ 4

j=0 2

Note: When f € P,, we have equality.

Definition 1 (Degree of Exactness)

The quadrature rule (1) is said to have degree of exactness m if it exactly
integrates all polynomials in P,,.

So the n+ 1 point quadrature rule (1) has degree of exactness n.

We will raise the degree of exactness in a clever way.
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Generalization of the Problem

To increase the degree of exactness, we consider a generalized problem:
/ ot =3 witls)
a j=0
for a weight function w(x) € CJa, b] and w(xj) >0on [a, b].
[ o = [ paewi o
/ Z F ()i (x)w(x) dx

- Y / £ w(x) o

= > wif(x)

j=0

where w; = fﬁ
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Generalization of the Problem

This yields the following generalized n + 1 point quadrature rule:
b n b
/ f(x)w(x)dx =~ Z f(xj)w; where w; = / L(x)w(x)dx  (2)
a j=0 a

(Still has degree of exactness n)

Choosing the nodes x; and weights w; in a clever way, we can dramatically
increase the degree of exactness of (2) for any w(x).

To do so, we need to use orthogonal polynomials.
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Orthogonal Polynomials

As before, consider a weight function w(x) € Cla, b] where w(x) > 0 and
w(x) # 0 on any subinterval of [a, b].

Definition 2 (Orthogonal Polynomials)

A set of polynomials {¢o, . .., ¢nt1} (Where deg(px) = k) is said to be an
orthogonal set of polynomials with respect to the weight function w(x) if

(8i(x), &5(x /¢, JiOWe) dc =0 Wi#].

Orthonormal polynomials (i.e., {¢;, ¢;) = 1) are not necessary here.

We will now show that the n+ 1 point generalized quadrature rule has
degree of exactness 2n + 1.
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Generalized Rule Degree of Exactness 2n + 1

Let p be degree 2n+ 1 and {¢o, ..., ¢nt1} @ set of orthogonal polynomials.
Then there exists g, r € P, such that

p(x) = dnt1(x)q(x) + r(x).

b b b
[ ome o = [ omatdatame) det [ et o
a a . a
= (Pnr1(x),q(x)) +/ r(x)w(x) dx
n b
= <¢n+1(X),ZCi¢i(X)> +/ r(x)w(x) dx

i=0

= /ab r(x)w(x) dx
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Generalized Rule Degree of Exactness 2n + 1

[ P(x) = Gns1()a() +r(x), [} p(x)w(x) dx = [, r(x)w(x) dx

Apply the n+ 1 point quadrature rule to p.  (recall: deg(p) = 2n+ 1)

b n
[ pmtax xS watx)
a _[_0

n

= Y widnlx)q XJ+§ w;r(x;)
Jj=0
n

b
=S wbeal)al) + / rx)w(x) dx

Jj=0

If this sum is always 0, then

n b b
wpx) = [ rowx)de = [ pxw(x) dx.
Suets) = L
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Generalized Rule Degree of Exactness 2n + 1

If we make

n

> widni1(x)q(x) =0

Jj=0

for any choice of nodes and weights, then the generalized n + 1 point
quadrature rule

n

b b
/ f(x)w(x)dx = Z f(xj)w; where w; = / Li(x)w(x) dx
a =0 a

has degree of exactness 2n + 1 because it is exact for all p € Py 1.

So, we choose the nodes {x, ..., x,} to be the roots of ¢, 1.
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Gaussian Quadrature

Let {¢o,...,dns1} be a set of orthogonal polynomials on [a, b] with respect to
the weight function w(x). Then ¢, has k distinct zeros in [a, b] for each
=0,1,...,n+ L

Theorem 4 (Gaussian Quadrature)

Given n, an interval [a, b], and a weight function w(x), choose the nodes x; to

be the n+ 1 roots of ¢,+1 and the weights w; to be w; = fab Li(x)w(x) dx. Then
the quadrature rule

b n
| feowax =Y wits)
a =0

is exact for all f € Papy1.

Observation: The nodes and weights do not depend on f!!
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Generating Orthogonal Polynomials

How are the orthogonal polynomials {¢y, . .., ¢,1} constructed?
Answer: Gram-Schmidt Algorithm, starting with ¢ := 1.

One can show the three-term recurrence:

¢o = 1
_ (x,1)
= x— )
_ B VP T W)
b = XGi (Pk—1, Pk—1) Pt (Pk—2, Pr—2) b2y k22
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Generating Orthogonal Polynomials

By shifting indices, then

p-1 = 0
¢ = 1
Okr1 = Xk — axdr — Brdr—1, k>0

where we define

XDk, Pk)

ak_m for k >0, ﬁk:M for k > 1.

(Pk—1,Pk—1)

Note that this recurrence generates monic polynomials.
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Examples of Orthogonal Polynomials

For each weight function w(x) there exists a system of orthogonal
polynomials.

Weight Interval | Orthogonal Polynomials
w(x) = [—1,1] Legendre

wx) = == | (-1,1) Chebyshev

w(x) =e™* (0, 00) Laguerre

w(x) = - (—00, 0) Hermite

Kyle nette (URI)
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Example: Legendre Polynomials

When w(x) = 1and [a, b] = [-1, 1], we get the Legendre Polynomials.

One can show that

(x¢k, Px) (X, p—1) K

= <¢k7¢k> =0 0sks=n, 5k:<¢k_1,¢k_1>_4k271 l<k=n
1,

¢0(X) = 1

¢1(X) =X

¢a(x) = X2 — %

P3(x) = x> — gx -1 1

ba(x) = x* — gxz + %
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Example: Chebyshev Polynomials

When w(x) =

Polynomials.
a,=0 0<
¢0(X) = 1
o1(x) = x
Ba(x) = x°
¢3(X) = X3
da(x) = x*

1
and [a, b] = (-1, 1), we get the Chebyshev
e [a, 6] = (-1,1), we g y
1/2 k=1 ™
k < = P = 0
<n, Bk {1/4 d<k<n Wi =T
1,,
1
2
3 /
2y -
4
1
2 —
x+8

<

J

| <

n



Progress So Far

The orthogonal polynomials {¢q, ..., ¢,+1} can be generated cheaply via a
three-term recurrence.

The nodes {x, ..., x,} can be chosen to be the roots of ¢,.1, and the
weights {wo, ..., w,} are found by w; = f 0i(x)w(x) dx.

Is there a way to more easily compute the nodes and weights?
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The Tridiagonal Connection

From

(XK, i) (XK, Pr—1)

_ for k = DO Pt g

o (Dks i) ork =10, 2 (Pr—1, Pr—1) ork=1
we define
Qo 1
4 ta
X

o) =| . T=| B

&n(x) (1) Cooaper 1

i Bn an (n+1)x (n+1)

Then

x(x) = Te(x) + Ppny1(x)enta-
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The Tridiagonal Connection

x¢(x) = To(x) + dny1(x)ent

Suppose ¢,+1(A) = 0. Then
Ap(A) = To(A)
so (A, ¢())) is an eigenpair of T.

Quadrature Nodes = Roots of ¢,41(x) = Evals.of T
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The Tridiagonal Connection

Using a similarity transformation with

D = ding(1, VA1, VBia, o V/Br o)

then
a0 VA ]
VB e VB
D'TD :=J= VB

Qp—1 \/E
L VBa d (1) x(n+1)

If (X, #()\)) is an eigenpair of T, then (A, D~1¢(\)) is an eigenpair of J.
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Calculating Weights

Eigenpairs of J are of the form (A, D~1¢()\)):

¢>0()\\)/>
A/VB
v = D) = o1( )/ 1
On(A)/V/ B Bn
In 1969, Golub and Welsch proved that the weights w; satisfy
V2
w; = fBo - — 0<i<n
[vil

where 8o = (1,1) = [ w(x) dx.

a
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Gaussian Quadrature

Given f € CJa, b], weight function w(x), and integer n, form the matrix J

a0 B
\/EOH\/E

J = Vb

Qp—1 \/E
\/E ap

with values defined by the three-term recurrence. Find eigenpairs (\;, v;)
2
Vi

”Vin then

of J. By choosing the nodes x; = \; and weights w; = 3, -

[ reamtde = 3 wirt)

forall f € Popys.
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Example: Gauss-Legendre Quadrature

Consider the interval [-1,1] and w(x) = 1. Recall that this generates the
(monic) Legendre polynomials

by using
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Example: Gauss-Legendre Quadrature

For example, let n = 4. Then Jis

0 0.5774
0.5774 0 0.5164
J= 0.5164 0 0.5071
0.5071 0 0.5040
0.5040 0

Eigenvalues of J (nodes) and weights are

Nodes | —0.9062 | —0.5385 0 0.5385 | 0.9062

Weights

0.2369 0.4786 | 0.5689 | 0.4786 | 0.2369
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Example: Gauss-Legendre Quadrature

With n = 4, we can exactly integrate polynomials of degree <2n+1=9:

1 4
/X9+X6dx = ) wif(x) = 02857
-1 k=0
1
/ x12 dx Error: 0.008
-1

1
/sin(exz)dx Error: 9.9 x 107"
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Shifting to Other Intervals

Consider a rule on [c, d], with nodes x;, weights w;, weight function w(x).
We want to create a quadrature rule on [a, b].

Define the affine transformation

T:[c,d] = [a, b], T(X):a+d_ (x—2¢)
71 [a, b] = [c,d], T y)=c+ %(y —a)
Note that
b T71(b)
/ f(x)w(x)dx = o) f(r(x))w(T(x))7’(x) dx

Kyle nette (URI)
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Shifting to Other Intervals

b _ 4
/f(x)w(x)dx = S—C/ f(r(x))w(r(x)) dx
b—a

e R

Then the nodes and weights for the [a, b] quadrature rule are

)?J':T(Xj)v j:d—CWj

and the weight function is w(x) = w(7(x)). That is,

/f(x)ﬁ/(x)dx = ) (X)W
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Tridiagonal Eigenvalue Problem

Computing nodes and weights requires forming and computing
eigenpairs of

a VB ]
VB a1 VB

J = VB2
Qp_1 \/E
I VBa

On the other hand, if we have an arbitrary symmetric tridiagonal matrix,
what do quadrature weights of the matrix tell us?
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¢ |In numerical linear algebra, one may wish to approximate extreme
eigenpairs of a large symmetric matrix A using an iterative method.

® In short: Given A € R™" and m < n, then m extreme eigenpairs of A
may be approximated by the eigenpairs of an m x m symmetric
tridiagonal matrix T (called Ritz pairs).

e We are interested in how the Gaussian Weights of T may accelerate
convergence of the Ritz pairs.




Questions?




Let {¢o, ..., dn+1} be a set of orthogonal polynomials on [a, b] with respect to
the weight function w(x). Then ¢, has k distinct zeros in [a, b] for each
k=0,1,...,n+ L

Clearly the result holds for ¢o. Suppose by way of contradiction that ¢,
changes sign on [a, b] at j distinct roots xq, ..., x; where j < k. Define

a(x) = (x = x1)(x —x2)...(x — x;) € P.

Note that g changes sign at xy,. .., x; as well, so the product g(x)¢«(x) does
not change sign on [a, b]. Because w(x) > 0, then g(x)¢x(x)w(x) does not
change sign either on [a, b]. Because g € P; and j < k, then

(¢k, q) / dr(x (x)dx =0

This suggests that a continuous nonzero function which never changes
sign on [a, b] has an integral that is zero, hence we have our contradiction.
Therefore, ¢, has at least k distinct zeros in [a, b], so it has precisely k.
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Three-Term Recurrence

Suppose we have an orthogonal set {¢y, ..., ¢x_1} and want ¢,. Note that
x¢k—1 has degree k and is not in the span of {¢y, ..., ¢x_1}. Orthogonalize
x¢k—1 against the previous {¢o, ..., ¢x_1} to get

k—1

dr(x) = xpu_1(x) — Z Xd’k 1 . ;fi§§)>¢,-(x). (3)

Now, notice that we can move the x to the other slot in the inner product
above because

b
(xra(x), ;(x) = / X1 (x) 5 (x)w(x) dx

/¢k 1 X¢J ()
= (Pr—-1(x), xp;(x))
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In this inner product, if j + 1 (the degree of the polynomial in the second
slot) is less than k — 1 (the degree of the polynomial in the first slot), then
by orthogonality the inner product is zero. That is,

J+1<k—=1 = ($r-1(x),x¢j(x)) =0

Equivalently if j < k — 2 then the inner product is zero. This means that we
can move the starting index of the summation in (3) up to k — 2:

k—1

Br(x) = xx1( Z X¢k 1 T;?J();()>¢j(x).
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