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Introduction
Here we consider symmetric and unreduced tridiagonal matrices

T =



α1 β1

β1 α2 β2

β2
. . . . . .
. . . αn−1 βn

βn αn

 .

We’ll introduce Gaussian Quadrature and explain how it is related the
eigenvalue problem of T .
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Quadrature – Basic Ideas
The idea of (interpolary) quadrature is to approximate a definite integral
of a function using a polynomial interpolant:∫ b

a

f (x) dx ≈
∫ b

a

pn(x) dx

where pn is a polynomial of degree at most n that interpolates f at n + 1
points in [a, b].

Question: Can we do this without constructing pn?

Question: For what functions f is this “exact”?
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Gaussian Quadrature Rules
There are many different types of quadrature rules, depending on the
functions f you wish to integrate:

Gauss-Legendre:
∫ 1

−1

f (x) · 1 dx

Gauss-Chebyshev:
∫ 1

−1

f (x) · 1√
1− x2

dx

Gauss-Laguerre:
∫ ∞

0

f (x) · e−x dx

Gauss-Hermite:
∫ ∞

−∞
f (x) · e−x2

dx

The difference being what weight function w(x) you choose.

We’ll concentrate on Gauss-Legendre here.
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Interpolating Functions
Given a function f (x) and n + 1 distinct nodes {x0, . . . , xn} ∈ [a, b], we can
interpolate f by a n degree polynomial pn(x)

pn(x) =
n∑

j=0

f (xj)ℓj(x)

where ℓj(x) is the j-th Lagrange basis function:

ℓj(x) =
n∏

k=0
k ̸=j

x − xk
xj − xk

, 0 ≤ j ≤ n ℓj(xk) =

{
0 j ̸= k

1 j = k

Why?

pn(xk) =
n∑

j=0

f (xj)ℓj(xk)

= f (x0)ℓ0(xk) + · · ·+ f (xk)ℓk(xk) + · · ·+ f (xn)ℓn(xk)

= f (xk)
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Interpolating Functions

Last Slide:
pn(x) =

n∑
j=0

f (xj)ℓj(x)

∫ b

a

pn(x) dx =

∫ b

a

n∑
j=0

f (xj)ℓj(x) dx =
n∑

j=0

f (xj)

∫ b

a

ℓj(x) dx .

This defines the weights of the quadrature rule:

wj =

∫ b

a

ℓj(x) dx , 0 ≤ j ≤ n + 1.

Therefore: ∫ b

a

f (x) dx ≈
n∑

j=0

wj f (xj).
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Orthogonal Polynomials

Definition 1 (Orthogonal Polynomials)
With a weight function w(x) that is nonnegative and continuous on (a, b),
we define the weighted inner product

⟨f (x), g(x)⟩ =
∫ b

a

f (x)g(x)w(x) dx .

Two polynomials p and q are said to be orthogonal if ⟨p(x), q(x)⟩ = 0.

We will use (a, b) = (−1, 1) and w(x) = 1 (for Gauss-Legendre quadrature).
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Building Up GL Quadrature
Given orthogonal polynomials ϕ0(x) = 1, and ϕ1(x) = x , then apply
Gram-Schmidt with the inner product above (any weight function) to
obtain the recurrence

ϕk+1(x) = (x − αk+1)ϕk(x)−
√
βkϕk−1(x), k = 0, . . . , n, ϕ−1(x) = 0.

This generates a set of pairwise orthogonal polynomials

{ϕ0, ϕ1, . . . , ϕn, ϕn+1}.

One can show that the constants αk and βk satisfy

αk =
⟨xϕk−1, ϕk−1⟩
⟨ϕk−1, ϕk−1⟩

, 1 ≤ k ≤ n + 1, βk =
⟨xϕk , ϕk−1⟩
⟨ϕk−1, ϕk−1⟩

, 1 ≤ k ≤ n

where we separately define β0 = ⟨1, 1⟩.
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Building Up GL Quadrature

Last Slide:

αk =
⟨xϕk−1, ϕk−1⟩
⟨ϕk−1, ϕk−1⟩

, βk =
⟨xϕk , ϕk−1⟩
⟨ϕk−1, ϕk−1⟩

For GL quadrature, importantly we find

αk = 0 ∀ k, βk =
k2

4k2 − 1
, 1 ≤ k ≤ n, β0 = 2.

In fact, the polynomials obtained are the Legendre polynomials:

ϕ0(x) = 1, ϕ1(x) = x , ϕ2(x) = x2 − 1

3
, ϕ3(x) = x3 − 3

5
x , . . . .

. . . OK, so what?
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Determining the Nodes
One can show that the approximation∫ b

a

f (x) dx ≈
∫ b

a

pn(x) dx

is exact for f (x) being a polynomial of degree at most 2n + 1 if the nodes
are chosen to be the roots of ϕn+1(x).

Lemma 2
The polynomial ϕn+1(x) has n + 1 distinct real roots in [a, b].

In Gauss-Legendre Quadrature, recall that the ϕ functions are the
Legendre polynomials — functions which finding roots of is an inefficient
and numerically unstable task.
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Theorem 3
Given the set of orthogonal polynomials {ϕ0(x), . . . , ϕn+1(x)}, then λ is a root
of ϕn+1(x) if and only if λ is an eigenvalue of the matrix

Jn =



α0

√
β1√

β1 α1

√
β2√

β2
. . . . . .
. . . αn−1

√
βn√

βn αn


,

where the associated eigenvector is

v(λ) =


ϕ0(λ)

ϕ1(λ)/
√
β1

ϕ2(λ)/
√
β1β2

...
ϕn(λ)/

√
β1 . . . βn

 .

Gunnar, Hannah, Kyle Tridiagonal Matrices December 7, 2023 11 / 23



Eigenvectors
Golub and Welsch proved that the weights wj can be found by

wj =
β0

∥vj∥22

where vj is the j-th eigenvector of Jn.
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In Summary
In conclusion, for GL Quadrature:

1 Create the set of Legendre polynomials {ϕ0, . . . , ϕn+1} and calculate αk

and βk .
2 Create the tridiagonal matrix Jn.
3 Find the eigenvalues of Jn, which are the nodes xj used in the

interpolation.
4 Find the eigenvectors of Jn, which give us the quadrature weights wj .∫ 1

−1

f (x) dx ≈
n∑

j=0

wj f (xj)

Why choose the nodes and weights in this way?
Because this approximation is exact (!!) for any degree 2n + 1 polynomial
f (x).
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Example
For n = 4, the Legendre polynomials are

ϕ0(x) = 1 ϕ1(x) = x ϕ2(x) = x2 − 1

3

ϕ3(x) = x3 − 3

5
x ϕ4(x) = x4 − 6

7
x2 +

3

35

The matrix J is

J4 =


0 0.5774

0.5774 0 0.5164
0.5164 0 0.5071

0.5071 0 0.5040
0.5040 0

 .

The eigenvalues of J4 are the nodes x0, x1, x2, x3, x4 and the weights are
found by the Golub and Welsh formula.
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Example
With n = 4, we can exactly integrate polynomials of degree ≤ 2n + 1 = 9:∫ 1

−1

x9 + x6 dx =
4∑

k=0

wj f (λj)︸ ︷︷ ︸
f (xj )

= 0.2857

∫ 1

−1

x12 dx Error: 0.008

∫ 1

−1

sin(ex
2

) dx

NOT integrable!

Error: 9.9× 10−4

Gunnar, Hannah, Kyle Tridiagonal Matrices December 7, 2023 15 / 23



Eigenvalues of Tridiagonal Matrix
But how did we find the eigenvalues of the matrix in the example?

J4 =


0 0.5774

0.5774 0 0.5164
0.5164 0 0.5071

0.5071 0 0.5040
0.5040 0



We need another solution that does not use the Theorem. That is, NOT by
finding the roots of ϕn+1.
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QR Algorithm
The Solution? QR Algorithm

Algorithm 1 QR-Algorithm
1: A(0) = A
2: for k = 1, 2, . . . do
3: Q(k)R(k) = A(k−1)

4: A(k) = R(k)Q(k)

5: end for

• Recall that the QR algorithm converges to the Schur form of A.
• A = PTPT where T upper triangular and P orthogonal.

• When A is symmetric, then A(k) converges to a diagonal matrix!
• Due to similarity, we know the eigenvalues of A.
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QR Algorithm
Note that Gauss-Legendre matrices Jn have a zero diagonal.

This is a problem!

Recall the convergence theorem from NLA:

Theorem 4 (NLA Theorem 28.4)
If the QR algorithm is applied to a real symmetric matrix with eigenvalues
satisfying |λ1| > · · · > |λn| and Q has nonsingular leading principal minors,
then A(k) converges.

The eigenvalues of J4 are

−0.9062, −0.5385, 0, 0.5385, 0.9062.

Which are not strictly monotonic in absolute value.

Therefore, the QR algorithm on Jn does not converge.
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The Solution
We must shift these matrices first before applying QR algorithm:

J4 + I =


1 0.5774

0.5774 1 0.5164
0.5164 1 0.5071

0.5071 1 0.5040
0.5040 1

 .

Now the QR algorithm above will converge, and we can recover the
eigenvalues.

Lemma 5
If A+ I has an eigenvalue λ, then A has an eigenvalue λ− 1.
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QR Algorithm
Eigenvalues of the shifted matrix

J4 + I =


1 0.5774

0.5774 1 0.5164
0.5164 1 0.5071

0.5071 1 0.5040
0.5040 1


are given by

0.0938, 0.4615, 1, 1.5385, 1.9062.

Therefore Jn has eigenvalues

−0.9062, −0.5385, 0, 0.5385, 0.9062.
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Conclusion

Last Slide: Jn has eigenvalues

−0.9062, −0.5385, 0, 0.5385, 0.9062.

Then the eigenvectors are formed by Golub-Welsch. For example,

v1 =


ϕ0(−0.9062)

ϕ1(−0.9062)/
√
β1

ϕ2(−0.9062)/
√
β1β2

ϕ3(−0.9062)/
√
β1β2β3

ϕ4(−0.9062)/
√
β1β2β3β4

 =


1

−1.5695
1.6362

−1.3256
0.7372


which implies

w1 =
β0

∥v1∥22
=

2

8.4414
= 0.2369
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Questions?
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