Secret Sharing Schemes

Kyle Monette

CS556 Cryptography Final Project

Spring 2022

Maximize Security & Convenience

Question: How can others recover my secret if I am not present or able to?

- Directly share secret: not secure, very convenient
- Distribute characters of secret: medium security, not convenient
- Don't share at all: very secure, not convenient

What in math requires at least k objects to uniquely define it, and does not define it uniquely for less than k?

Shamir's Secret Sharing

- 1 Choose secret a_0 , prime p, number of shares n, and threshold k so that $2 \le k \le n < p$.
- 2 Construct the polynomial

$$f(x) = a_0 + a_1x + \cdots + a_{k-1}x^{k-1}$$
.

3 Distribute k together with n distinct shares

$$\{(x_1, f(x_1)), (x_2, f(x_2)), \ldots, (x_n, f(x_n))\}.$$

4 Given any subset of k shares, shareholders compute

$$a_0 = \sum_{j=0}^{k-1} f(x_j) \prod_{\substack{m=0 \ m \neq j}}^{k-1} \frac{x_m}{x_m - x_j}.$$

Continuity Attacks

Remember: k - 1 is known!

4/9

Solution: Finite Fields

Construct f(x) over \mathbb{Z}_p for large prime p

Some Extensions

- Newton's Divided Difference: create additional shares easier (computationally)
- Chebyshev Nodes: eliminate Runge Phenomenon for integer arithmetic

Beyond SSS

There are three main issues in SSS:

- 1 The shareholders could contribute false shares.
- 2 The dealer could distribute false shares so that multiple secrets are generated.
- **3** The shareholders do not know if they received valid shares.

This is solved using *Verifiable Secret Sharing* (VSS) and *Publicly Verifiable Secret Sharing* (PVSS).

- Feldman's scheme: Auxiliary information is sent so they can check if their share is the discrete log of a public value.
- PVSS uses this together with ElGamal so anyone can verify anyone's share (without revealing it).

Asmuth-Bloom Scheme

1 Given a secret S and n and k such that $2 \le k \le n$, construct a sequence of pairwise coprime positive integers S satisfying the property that

$$M := \prod_{i=1}^k m_i > p \prod_{i=1}^{k-1} m_{n-i+1}.$$

- 2 Choose $\alpha \in \mathbb{Z}$ and secretly compute $y = S + \alpha p$ such that $0 \le y < M$.
- 3 Distribute shares (y_i, m_i) , where $y_i \equiv y \pmod{m_i}$.
- 4 Given *k* shares, shareholders can uniquely determine *y* from solving their system of congruences using the Chinese Remainder Theorem.
- **5** Shareholders recover $S \equiv y \pmod{p}$.

Questions?