CS556 Cryptography
Final Project: Secret Sharing

Spring 2022

KYLE MONETTE

ABSTRACT

Secret sharing is a general procedure for distributing information about a secret in shares, in such
a way that a minimum number of shares will reveal the secret but any fewer will not. We call
this a (n, k) threshold scheme, and the most famous one is Shamir’s Secret Sharing procedure [1]
based on polynomial interpolation. Here, we discuss Shamir’s procedure, provide some properties,
and describe some modifications that can be done. A widely known extension is verifiable secret
sharing and publicly verifiable secret sharing, which is explained later. Finally, we conclude with
Asmuth-Bloom’s scheme that uses the Chinese Reminder Theorem as an example of secret sharing
without Shamir’s approach (i.e., without interpolation).

CONTENTS

1 Introduction
2 Brief History
3 Primitive Secret Sharing
4 Shamir’s Secret Sharing
4.1 The Procedure
4.2 Mathematical Background .
4.3 Interpolation Methods . . .
4.4 Digression: Chebyshev Nodes
4.5 Example: Integer Arithmetic
4.6 Example: Finite Fields . . .
4.7 Properties
5 Verifiable Secret Sharing
5.1 VSS: Discrete Logarithms .
5.2 PVSS: Discrete Logarithms
5.3 Feldman’s Scheme
6 Chinese Remainder Theorem
6.1 Mathematical Background .
6.2 Asmuth-Bloom Scheme . . .
6.3 Example: Asmuth-Bloom .
Bibliography

ii

0O Tk W= ==

el e
_0 O O ©

-
w

CS556 Final Project Kyle Monette Spring 2022

1 Introduction

Suppose the CEO of a large company has a safe in their office that contains important information, such as
passwords to accounts, money, billing information, etc. If they are the only ones that can access the safe,
then how would their predecessor or direct reports unlock the safe if something were to happen to the CEO?
One solution is to give trusted individuals the combination to the safe to use in an emergency or unfortunate
situations. But what if the password is leaked out? Obviously this is the least secure option, but it is the
easiest way to access the contents of the safe if the CEO cannot. Ideally, we want something in the middle:
the most security possible with the greatest redundancy.

Suppose the CEO could give out pieces of the combination, say one character or number, to each of the
board members of the corporation. Then, if an emergency arose, the board members could come together
and assemble the combination. This is certainly better than giving each member the combination in its
entirety. However, even with all the correct characters, it would take substantial time to determine the correct
ordering. This could be compounded with the possibility of members loosing their character, making the
combination extremely difficult to crack.

Another approach is to use secret sharing. As the name implies, parts of the secret are given out to
shareholders, but in such a way that a certain number of them (and no less) have to come together and share
their pieces in order to acquire the secret. Any fewer shareholders will have no information about the secret.

2 Brief History

Secret sharing was proposed in 1979 by Adi Shamir [1] and George Blakley working independently. Shamir
created a polynomial interpolation method by exploiting the fact that n coordinate points uniquely define a
degree n — 1 polynomial, and Blakley created a geometric procedure by exploiting the fact that n nonparallel
n — 1 dimensional planes intersect at only one point. Six years later in 1985, Benny Chor, Shafi Goldwasser,
Silvio Micali, and Baruch Awerbuch proposed verifiable secret sharing (explained later) as a way to ensure
that the secret can be uniquely determined from the distributed shares.

There are now many secret sharing procedures, including schemes based on the Chinese Remainder
Theorem (explained later) and proactive secret sharing, which have legitimate applications. For instance,
secret sharing is used in secure multiparty computation, where parties compute a function given their inputs
while keeping their inputs private, and also appears in user authentication in various systems.

3 Primitive Secret Sharing

It is worth noting, before we introduce the mathematics behind Shamir’s scheme, that secret sharing can be
done in a quite primitive way in that there is no math involved at all.

Suppose your friend has a phone with a six digit password (numbers 0 to 9). If they trust you and two
others, say, they could give each of you a string:

3.4 1 5 1.9

On their own nor with only two strings together could you recover the secret password. However, once all
three friends are present, the secret can be revealed easily. We can imagine that if letters (and perhaps
numbers together) are used, it would be unreasonable to guess each character in a brute-force attack. This
makes this primitive version unsecure but also not trivial.

4 Shamir’s Secret Sharing

Shamir’s secret sharing (SSS) procedure [1] is based on the concept of polynomial interpolation. Specifically,
we consider these polynomials to be over a finite field to make the secret impossible to determine from
brute-force attacks. In SSS, we link the idea of secret sharing to polynomial interpolation via the fact that
a real valued polynomial p(z) of degree n requires n + 1 distinct points to uniquely define it (e.g., a line
requires two distinct points, a parabola requires three, etc). Because polynomials are continuous functions,
it is relatively easy to brute-force through possible combination of coefficients and therefore a finite field is
necessary.

Page 1

CS556 Final Project Kyle Monette Spring 2022

4.1 The Procedure

Suppose the “dealer” has a secret s which can be written as ag € F, where ag # 0 and F is a field. Ideally, we
want [F = Z,, for p prime, but for the sake of explanation, we can also have F = R.
Note: If F = Z,, all operations below are carried out modulo p.

1. The dealer chooses a prime p and the number of shares n such that 2 < n < p and the threshold %k such
that 2 < k <n.

2. The dealer chooses nonzero constants aq,...,ar—1 € F randomly, and then constructs the polynomial

fl@)=ap+arz+- -+ ap_12" L.

3. The dealer creates a set of n shares’
{(@1, f(21)), (22, f(22))s - ooy Ty f(20))} (w5 €F, 2 # 25 Vi # j).

4. The dealer assigns to each “shareholder” one and only one share from this set, and tells each shareholder
the value of k (it is not necessary, and can be dangerous, to share n).

5. Given any subset of k shares, shareholders can obtain ag = f(0) using polynomial interpolation by

computing . .
—1 —1
x
s=ao=y flx;) [] —— (1)
— L Ty —
J=0 m=0
m#j

It may be possible to not share k& with the shareholders, however this is not a convenient situation. If the
dealer shares k, then the shareholders can communicate and ensure that enough (= k) of them are present.
4.2 Mathematical Background
Equation (1) is derived using Lagrange interpolating polynomials.

Definition 4.1.

Given a set of k + 1 data points (zo,%0);- -, (j,Y;),-- - (Tk, Yk), where the x; are distinct, we define
the Lagrange interpolating polynomial as

For SSS, it is not necessary for us to calculate the entire polynomial as we only care about the root (agp),
hence the modified result in equation (1). Furthermore, if the field is Z, then we compute the polynomial
modulo p.

It is necessary that this interpolant is unique for each set of data points—else, we would not necessarily
be able to recover our secret. Fortunately, this is guaranteed with the following theorem [2].

Theorem 4.2.
Let (x1,y1)y -+ (Tn,yn) be n points with distinct x;. Then there exists only one polynomial P of degree
n — 1 or less that satisfies P(x;) = y; fori=1,...,n.

1In the original paper (1] and many online resources, it is common to choose the sequence to be x =1,2,...,n. It is unclear
at this time why this is the standard as it is significantly easier to crack if F = R. If F = Z,, we must choose z; from 0,1,...,p—1
obviously, but it seems that the z; need not be consecutive in the sequence.

Page 2

CS556 Final Project Kyle Monette Spring 2022

Proof.

The existence is given by the Lagrange interpolating polynomial. We show here that the interpolant is unique.
Suppose there are two polynomials P and @ of degree n — 1 or less that interpolate the points. That

is, P(x1) = y1,Q(x1) = y1, etc. Define H(z) = P(x) — Q(x). Then degH < n —1as degP <n—1 and

deg @Q < n — 1. Also we can see that

H(xl):P(arl)—Q(xl):yl—yl ZO7 H(.Z‘Q):P(l‘g)—Q($2)Zyg—ygzo,....

Therefore H(z) has n distinct zeros since we assumed z; are distinct. By the fundamental theorem of algebra,
a nonzero degree n polynomial has at most n zeros. However, H has degree n — 1 or less and has n zeros.
Therefore, it must be that H = 0 (the zero polynomial). Therefore P = Q. |

Remark 4.3.
This theorem holds for polynomials of degree n — 1 or less where we are given n points. In fact, there are
infinitely many degree n polynomials that interpolate n points.

4.3 Interpolation Methods

While using Lagrange’s method for constructing the polynomial is sufficient, it is not computationally friendly.
One disadvantage of this approach is that we have to recalculate the polynomial if another point is added
to the interpolation set. An alternative is to use Newton’s divided difference (NDD) method. This will not
create a different polynomial-—we showed previously that the interpolating polynomial is unique. To use
NDD, we first need to define the divided difference [2].

Definition 4.4.
The divided difference is denoted by f[z1,...,x,] and is the coefficient of the 2"~ term in the polynomial
that interpolates (z1, f(21)), ..., (zn, f(zn))-

The interpolation polynomial is given by

P(z) = flrg,...,zp)(x —21) oo (@ — 2peq).

For example, the points (0,1),(2,2),(3,4) yield the interpolating polynomial f(z) = %xz — %x + 1.

Therefore f[0,2,3] = %, or any permutation of 0,2, 3. That is, f[0,3,2] = f[3,0,2] = f[0,2,3].
Divided differences can be calculated recursively:

flzk] = f(or)
_ Sflrrga] = flee]
f[l‘k?axk-i-l] = m
flTr; Try1, Thgo] = flortr, Tppo] — flag, T
T2 — Tk
Example 4.5.
Say we are given (0,1), (2,2),(3,4). Then
flza] = f(0) =1
flzr, 2] = £[0,2] = %{;[O] _ %
flo1, 22, 23] = £]0,2,3] = W _ %
Therefore

CS556 Final Project Kyle Monette Spring 2022

Now suppose we need to add another points (1,0). Then we only have to calculate
1
f[$1,$2,$37.'134] = f[07 27 3a 1} = _5
Then the new polynomial P(z) is

1 a3 9 7
P(z) = P(z) — 5(33— 0)(z —2)(z—3) = Y + 3z — 51‘—&- 1.

A

Note that in this example we could have added any point to the interpolating set, and would have received
a new polynomial each time. This justifies the claim made in Remark 4.3 that there are infinitely many
degree n polynomials that interpolate n points.

4.4 Digression: Chebyshev Nodes

In the Lagrange and Newton’s divided difference methods, we use use equally spaced nodes to generate the
interpolating polynomial. For a higher degree interpolant, this can lead to Runge’s phenomenon, where the
interpolant oscillates at a high frequency at the end of the interpolation domain. In the case of SSS, if we use
polynomials defined over R, we might encounter this phenomenon if high degree polynomials are used (k
is taken to be large). In theory, this should not cause any problems as the polynomial is still interpolating
correctly. Rather the danger comes in floating point representations and calculation error as the coefficients
and share coordinates could become too large for the computer to accurately compute.

A way to combat Runge’s phenomenon is to use Chebyshev nodes. Then, we use these values to generate
the interpolant in the same way that we did in the classical approach.

Chebyshev nodes [2] are defined on the interval [—1,1] C R by

2i — 1
xi:cos<ﬂ-(l)) 1=1,2,...,n.
n

We can extend this to any interval [a, b] by

b+a b—a m(2 — 1)
xr; = + cos .
2 2 n

Note that we cannot use Chebyshev nodes if the field is Z,. Therefore, if the dealer insists on using R as the
field, then the use of Chebyshev nodes (with NDD for computational advantages) is perhaps the next best
option.

4.5 Example: Integer Arithmetic

Here we consider SSS with F = R, both as an example of the calculations involved and to illustrate the lack
of security that comes from integer arithmetic instead of modulo arithmetic.

Suppose our secret is given by ag = 123 with n = 3 and k& = 3. We then choose k — 1 = 2 random natural
numbers a; = 94, as = 166. Therefore our polynomial is

f(x) = ao + a1x + axx® = 123 + 94z + 1662°.

We then make n = 3 shares of
(1,383), (2,643), (3,903).

These points then go to the shareholders. To recover ag, we need all 3 = k shareholders to come together and
share their pieces. Then, we recover ag from

Page 4

CS556 Final Project Kyle Monette Spring 2022

oD DU TR

Ty — Ty L] —Xj T2 — Ty

<

=0
m

<

_ f(xo)xlafz f($1)$0$2 + f($2)330331

(x1 —@o)(x2 —w0) (w0 —w1)(w2 — 1) (0 — @2) (21 — 22)
= 1149 — 1929 + 903
=123

Note that we used a consecutive sequence for the shares by {x,} = 1,2,3. Suppose a third party (or a
malicious shareholder) Eve found two points (1,383) and (2,643). In theory, Eve should not be able to find
ap, but because we are using integer arithmetic and we have a consecutive sequence of {x, }, Eve can narrow
down their search for the missing coefficient quite dramatically.

Eve can construct the polynomial f(z) = ag + a1z + asx?. The shares she know tell her that

383:a0+a1 + as
643 = Qo + 2(11 + 40,2

Combining these together,
643 — 383 =a; +3a2 = a1 =260 — 3as.

As she knows that as € N, she can start guessing:

as =1 = a; = 257
as =2 = a1 = 254
as =3 = a1 = 251

ar =86 = a; =2

After this she can stop, as it was assumed that as € N, and going further would make a; < 0. Therefore she

has narrowed down the problem of determining the last coefficient of f(x), where there are infinitely many
choices, to only 86.

This example tells us some very important choices about SSS:

1. We should use finite fields with modular arithmetic to avoid brute-force attacks to narrow down the
choices for the coefficients.

2. A higher degree polynomial with many coefficients is more secure, both in cases where F = R and
F=2Z,.

3. While literate suggests that the dealer should use a consecutive integer sequence for z values in the
shares, it is unclear why this is necessary. Choosing random values (within a reasonable interval),
especially in the case where finite fields are not used, results in a large increase in security.

4.6 Example: Finite Fields

Here we consider SSS with F = Z,,, with p = 1613. As before, we’ll take k = n = 3. Suppose our secret is
given by ag = 1234. We then construct the polynomial

f(x) = ap + a17 + azx® = 1234 + 166z + 942? (mod p).
The dealer distributes the three shares of

(1,1494), (2,329), (3,965).

Page 5

CS556 Final Project Kyle Monette Spring 2022

For the sake of explanation, we’ll use NDD to recover the secret. As defined, the shareholders would calculate
the polynomial

f(x) = floa] + flen, zol(x — 21) + flon, x2, 23](z — 21) (2 — 22).

The divided differences are

fled] = f[1] = 1494
f[a:l, 332} = f[l, 2] = —1165 = 448

f12,3] - f1,2]

=94
3—-1 J

flry, 22, w3] = f[1,2,3] =

Recall that these operations are being done modulo p = 1613. The interpolant is

f(x) = 1494 4 448(x — 1) + 94(x — 1)(z — 2) = 1234 + 1662 + 9422

Note that ag # f[x1]! That is, it is not enough to stop the procedure at this one step.
Now imagine that Eve was sneaking around again and got two shares: (1,1494) and (2,329). Then she
knows (by knowing that k = 3) that

1494 = Qo + a1 + ag
329 = ag + 2a1 + 4as

This implies that

1494 = ag + a1 + as + kip
329 = ag + 2aq + 4as + kop

for k1, ks € N from modular arithmetic. Subtracting these,

32971494:a1+3a2 +p(k2*]€1) = a1 = 711657}7(!{1271{11)73@2.

Eve can then begin to guess as by:

as=0=a; = —1165 _p(kQ — kl)
as =1= a; = —1168 7[)(,1{32 —]{31)

Unlike before, this sequence can continue on and thus Eve does not know anything about the missing
coefficient because she does not know the constants k7 and ks.

4.7

Properties

In the original framework [1], some properties of SSS are stated:

1.

Secure: SSS with a finite field is a system that has information-theoretic security in that it is impossible
to break even with infinite computational power (having fewer than & shares provides no information
about the secret).

. Minimal: The size of each share does not exceed the size of the original data.

Extensible: More shares can be generated without affecting other shares (which is easier to do with
NDD, as we saw).

. Dynamic: Security can be improved without changing the secret by increasing k. Granted the

shareholders would have to know about this, but it can be done.

Flexible: People of higher importance can be given a smaller “local” threshold number. For example,
the president only needs three shares but a secretary needs five.

Page 6

CS556 Final Project Kyle Monette Spring 2022

5 Verifiable Secret Sharing

There are two main issues in SSS:

1. The shareholders could contribute false shares, perhaps to get information about other shares in an
effort to reconstruct the secret without them.

2. The dealer could distribute false shares so that multiple secrets are generated, perhaps in the scenario
of a very malicious dealer.

These issues can be solved using verifiable secret sharing (VSS). Here, we allow participants to ensure that
they can indeed recover a unique secret without (in theory) the dealer revealing any information about it.

How do we know that other shareholders received valid shares, without revealing their shares to the
audience? This question can be solved using publicly verifable secret sharing (PVSS). Here, not only can
shareholders verify their shares individually but outsiders (shareholders or not) can determine if all shares
are valid.

That is, we seek verification of correctness so that the shareholders are required to submit accurate and
valid shares, and so that the shareholders are sure they recovered the actual secret disclosed by the dealer.

5.1 VSS: Discrete Logarithms

As described in [3], we now explain a method that can verifiably share discrete logarithms. This method can
be extended to PVSS by means of an encryption scheme that allows us to verify that cipher text contains the
discrete logarithm of a given value.

First, we give a theoretical and general framework and then move to a (n, k) threshold scheme. As done
in [3], we define and use access structures.

Definition 5.1 (Access structure).
An access structure A is a subset of P({1,2,...,n}) (the power set).

In essence, the access structure is the set of qualified subsets that are allowed to use the structure. We also
require that the structure is monotone; that is,

AeA and ACB = BeA
In SSS, we could have defined an access structure as
A={AeP{l,...,n})| 4] > k}

where |A| is the cardinality of A.
Now we can explain the procedure for a given A. Let p be a large prime, let ¢ = % be prime, and
h € Z;, such that ord h = q. Let G be a group of order p and g a generator of G.

1. The dealer determines the secret s € Z, and defines S = g°, where S is public.

2. For each A = {j1,...,jrx} € A, the dealer computes the shares

random element of Z, ¢ = ji,...,Jk—1
Sa = k—1))
s— > Sa, (modp) i=j
I=1

Each S4, gets sent to shareholder P;.

3. The dealer publishes F4, := g%4i so that everyone can verify that

VAc A [[Fa =S=g"
€A

Page 7

CS556 Final Project Kyle Monette Spring 2022

4. The shareholders can verify their own shares by checking whether S4, is the discrete logarithm of Fla,.

Now in a (n, k) threshold scheme, we assign to each shareholder x; € Z,, z; # 0. The dealer chooses a
random f; € Zy, for j =1,...,k—1 and publishes § = ¢g° and F}; = gli for j =1,...,k —1. Each shareholder
then secretly receives the share

k—1
Si=s+ Z fjxf (mod p).
j=1

Any subset of k shareholders can recover s from Lagrange’s interpolating polynomial. To verify the share S;
that shareholder P; received, they compute
k=1
J
STIE"
j=1

and checks that this is g

Proof.
In the verification, the shareholder ¢ computes F;, which is

k=1
=9 H ij".
j=1

We show here that if the share is valid, F; = ¢”i.

k

k—1 .
J o —
F,=g° H(gfj)zi =g° [gflzi X ngm? X oeee X gf’“—lxqz 1}
Jj=1

_ g Dol

— gSgSi—S — gSj,

5.2 PVSS: Discrete Logarithms

In order to make the scheme in the last section publicly verifiable, we need a public key encryption system
that allows us to verifiably encrypt the discrete logarithm of a public element. Here, we use ElGamal, but
there are other alternatives. With p, ¢, and h from the last section, we illustrate the scenario:

1. Each shareholder chooses z € Z; secretly and publishes their y = h* (mod p).

2. The dealer encrypts m € Z, with public key y by randomly choosing o € Z, and calculating

A=h" (mod p), B=m'y* (mod p).

3. Shareholders can decrypt by calculating m = A*B~! (mod p).

Further, we need a protocol for verifying that (A, B) encrypts the discrete logarithm of V' = ¢ € G. The
idea is that if A = h® and B = m~ 'y, then

VB = ”Um vy = (gm)m Y e gmm_lya = gya.

The prover (dealer) proves that the discrete logarithm of A in base h is the double discrete logarithm of V2
in bases g and 3. In other words, they prove that they have an a such that A = A% and VE = ¢¥°.

1. The dealer chooses w € Z, randomly, computes t;, = h" (mod p), and t, = ¢¥". They send t, and tg
to the verifier.

Page 8

CS556 Final Project Kyle Monette Spring 2022

2. The verifier chooses ¢ € {0,1} randomly and sends ¢ back.

3. The dealer computes r = w — ca (mod ¢) and sends r.

4. The verifier checks that

v c=0

tp, = h"A° (mod p), ty = {VByr N

Say that ¢ = 0. Then r = w (mod q), so t, = h* = h" = h" A® and this checks. Further, t, = gV" =g, and
this checks.

Say that ¢ = 1. Then r = w — a (mod q), so t, = h* = h"+® = h"h* = h" Al and this checks. Further,
ty = gV’ = gyrw = ¢¥"¥" and B = m~'y®, so this becomes g¥ . Since V = g™, we then get the desired
VB,

5.3 Feldman’s Scheme

In the last section, consider letting f; be the a; for j =1,...,k — 1 that we saw in SSS. That is, regard f; as
the polynomial coefficients. Then

k—1
Si=s+>_ fixl = f(x).
j=1

These are exactly the shares we saw in SSS. Converting this theoretical approach in the last two sections
back to SSS is (essentially) Feldman’s scheme [4].

1. The dealer chooses a cyclic group G, such as Z,,, of prime order ¢ together with a generator g. The
group and generator are public. Typically, G = Z; with order glp — 1 for a prime gq.
2. The dealer computes secretly a random polynomial

f(@)=ao+a12® + -+ ap_12!

of degree k — 1 from Z,[z| such that f(0) = ag, where ag is the secret.

3. The n shares are computed (as in SSS) by f(1),..., f(n) (mod ¢). Any k shares can recover the secret
using interpolation.

So far, this is identical to SSS over a finite field Z,. Next, the dealer distributes auxiliary information to
the coefficients of f modulo g:
co=9g",c1 =g, ..., C_1 =g .
With this information distributed, any shareholder can verify the consistency of their share. That is, for
shareholder ¢ where 1 < ¢ < n, they can verify that y = f(i) (mod ¢) where their share is f(i) and y is some
image (ideally their share) from the polynomial:

gy = c001102i2 e CpqitTt

k—1

definition of ¢;

= gi=° power laws

g
g’® definition of f

Page 9

CS556 Final Project Kyle Monette Spring 2022

Feldman’s scheme is secure, but perhaps only for attackers that have some computing restraint as it would
be possible to crack with enough computations. Another issue is that releasing g®° reveals information about
the secret. With a small enough group, this could be especially detrimental.

6 Chinese Remainder Theorem

There exists a secret sharing scheme based on the Chinese Remainder Theorem, which we will now discuss.
The idea is similar to Shamir’s procedure in that it is an (n, k) threshold scheme, but rather than using
polynomial interpolation and the uniqueness of an interpolant, we use the idea that we can uniquely determine
a system of congruences given coprime moduli.

First, we need a few tools from number theory.

6.1 Mathematical Background

Theorem 6.1 (Chinese Remainder Theorem).
Let my,mo, ..., my be pairwise relatively prime positive integers. Then the system of congruences

x =a; (mod mq)
x = az (mod ma)
x = a (mod my)

has a unique solution modulo M = mims ... my.

This theorem does not give us a procedure of calculating the solution x, which we will show now.
1. Compute M = mims ... my.

2. Compute

3. Solve the system of congruences for yy

My =
Mays =

Mkyk =1 (IIlOd mk)
4. Then the solution x is given by
x=aMyy; + - + ap My, (mod M).

6.2 Asmuth-Bloom Scheme

The Asmuth-Bloom secret sharing scheme (ABS) [5] uses the Chinese Remainder theorem and is one
of two popular secret sharing procedures that does so (the other being Mignotte’s, not discussed here).
Asmuth-Bloom was proposed in 1983, four years after SSS. The procedure is as follows:

1. The dealer chooses the number of shares n and the threshold k such that 2 < k < n, and constructs a
sequence of pairwise coprime positive integers

p<mp <mo <---<Mp

Page 10

CS556 Final Project Kyle Monette Spring 2022

satisfying the property that
k k—1
M = H m; >p H My 41
i=1 i=1

2. The dealer defines the secret S to be an integer such that 0 < S < p.

The dealer then chooses o € Z and computes y = S + ap such that 0 <y < M, where y is kept secret.

- W

The n shares (y;, m;) are distributed, where each y; is such that y; = y (mod m;).

5. Given k shares, shareholders can uniquely determine S from solving their system of congruences using
the Chinese Remainder Theorem as

y=S+ap=S (mod p).

That is, shareholders recover y from the Chinese Remainder Theorem and take y modulo p (a public
modulus) to recover S.

Asmuth-Bloom has the property, akin to SSS, that & — 1 or fewer shares will reveal no information
about the secret. Suppose only k£ — 1 shares are given to a participant. Then the collection of n; such that
n; =y (mod N) where N is the product of my, ..., mr_1 and n; < M cover all congruence classes modulo p.
Each class contains at most one more or one less n; than any other, so there is no information given about
the secret S.

6.3 Example: Asmuth-Bloom
Let n =4, k=3, and S = 2. We then create the sequence

p=3,m1=11,ma =13, m3 = 17,my = 19.

Note that the sequence is valid because all terms are pairwise coprime and

3 2

M =] mi=2431> p[[mn—is1 = 969.
=1 i=1

We randomly pick o = 51 which defines
y=S+ap=155 < M.
The 4 = n shares are calculated as

y1 =1 (mod 11)
y2 = 12 (mod 13)
y3 = 2 (mod 17)
ys = 3 (mod 19)

We require 3 = k shares to recover the secret, say {1,12,2}. Then we use the procedure in the Chinese
Remainder Theorem to determine y modulo N. Here, we determine

N N N
N =11 x13 x17=2431, Ny = — =221, No = — =187, N3 = — = 143.

mq mo ms
Our system of congruences is then
Nyzp =1 (mod my) 221z =1 (mod 11) 1 =1
Noxzo =1 (mod my) = 187z9 =1 (mod 13) = 29 =28
N3zg =1 (mod ms3) 143z3 =1 (mod 17) x3=>5

Page 11

CS556 Final Project

Kyle Monette

Spring 2022

Thus, y is

Then we determine

as was expected.

y = Y121 N1 + Y222 Na + y323N3 = 19603 = 155 (mod N).

S =155 (mod 3)

= S =2 (mod 3),

Page 12

BIBLIOGRAPHY

Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612-613, 1979.
Timothy Sauer. Numerical Analysis. Addison-Wesley Publishing Company, 2011.

Markus Stadler. Publicly verifiable secret sharing. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 190-199. Springer, 1996.

Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th Annual Symposium
on Foundations of Computer Science (sfcs 1987), pages 427-438. IEEE, 1987.

Charles Asmuth and John Bloom. A modular approach to key safeguarding. IEEFE transactions on
information theory, 29(2):208-210, 1983.

13

	Introduction
	Brief History
	Primitive Secret Sharing
	Shamir's Secret Sharing
	The Procedure
	Mathematical Background
	Interpolation Methods
	Digression: Chebyshev Nodes
	Example: Integer Arithmetic
	Example: Finite Fields
	Properties

	Verifiable Secret Sharing
	VSS: Discrete Logarithms
	PVSS: Discrete Logarithms
	Feldman's Scheme

	Chinese Remainder Theorem
	Mathematical Background
	Asmuth-Bloom Scheme
	Example: Asmuth-Bloom

	Bibliography

